
��������	
�����������	
�����������	
�����������	
���

����� ����
�
����� ����
�
����� ����
�
����� ����
�

Version 2.0

� 1998-2002 by NetMedia, Inc. All rights reserved.

Basic Express, BasicX, BX-01, BX-24 and BX-35 are trademarks of NetMedia, Inc.

Microsoft, Windows and Visual Basic are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Adobe and Acrobat are trademarks of Adobe Systems Incorporated.

2.00H

2

System library
The BasicX operating system provides a library of system calls in the following categories:

Math functions

Abs Absolute value
ACos Arc cosine
ASin Arc sine
Atn Arc tangent
Cos Cosine
Exp Raises e to a specified power
Exp10 Raises 10 to a specified power
Fix Truncates a floating point value
Log Natural log
Log10 Log base 10
Pow Raises an operand to a given power
Randomize Sets the seed for the random number generator
Rnd Generates a random number
Sin Sine
Sqr Square root
Tan Tangent

String functions

Asc Returns the ASCII code of a character
Chr Converts a numeric value to a character
LCase Converts string to lower case
Len Returns the length of a string
Mid Copies a substring
Trim Trims leading and trailing blanks from string
UCase Converts string to upper case

Memory-related functions

BlockMove Copies a block of data from one RAM location to another
FlipBits Generates mirror image of bit pattern BX-24, BX-35 only
GetBit Reads a single bit from a variable BX-24, BX-35 only
GetEEPROM Reads data from EEPROM
GetXIO Reads data from extended I/O BX-01 only
GetXRAM Reads data from XRAM BX-
01 only
MemAddress Returns the address of a variable or array
MemAddressU Returns the address of a variable or array
PersistentPeek Reads a byte from EEPROM
PersistentPoke Writes a byte to EEPROM
PutBit Writes a single bit to a variable BX-24, BX-35 only
PutEEPROM Writes data to EEPROM
PutXIO Writes data to extended I/O BX-01 only
PutXRAM Writes data to XRAM BX-01 only
RAMPeek Reads a byte from RAM
RAMPoke Writes a byte to RAM
SerialNumber Returns the version number of a BasicX chip

3

Queues

GetQueue Reads data from a queue
OpenQueue Defines an array as a queue
PeekQueue Looks at queue data without removing any data
PutQueue Writes data to a queue
PutQueueStr Writes a string to a queue
StatusQueue Determines if a queue has data available for reading

Tasking

CallTask Starts a task
CPUSleep Puts the processor in various low-power modes
Delay Pauses task and allows other tasks to run
DelayUntilClockTick Pauses task until the next tick of the real time clock
FirstTime Determines whether the program has ever been run since download
LockTask Locks the task and discourages other tasks from running
OpenWatchdog Starts the watchdog timer
ResetProcessor Resets and reboots the processor
Semaphore Coordinates the sharing of data between tasks
Sleep Pauses task and allows other tasks to run
TaskIsLocked Determine whether a task is locked
UnlockTask Unlocks a task
WaitForInterrupt Allows a task to respond to a hardware interrupt
Watchdog Resets the watchdog timer

Type conversions

CBool Convert Byte to Boolean BX-24, BX-35 only
CByte Convert to Byte
CInt Convert to Integer
CLng Convert to Long
CSng Convert to floating point (single)
CStr Convert to string
CuInt Convert to UnsignedInteger
CuLng Convert to UnsignedLong
FixB Truncates a floating point value, converts to Byte
FixI Truncates a floating point value, converts to Integer
FixL Truncates a floating point value, converts to Long
FixUI Truncates a floating point value, converts to UnsignedInteger
FixUL Truncates a floating point value, converts to UnsignedLong
ValueS Convert a string to a float (single) type

4

Real time clock

GetDate Returns the date
GetDayOfWeek Returns the day of week
GetTime Returns the time of day
GetTimestamp Returns the date and time of day
PutDate Sets the date
PutTime Sets the time of day
PutTimestamp Sets the date, day of week and time of day
Timer Returns floating point seconds since midnight

Pin I/O

ADCToCom1 Streams data from ADC to serial port BX-24, BX-35 only
Com1ToDAC Streams data from serial port to DAC BX-24, BX-35 only
CountTransitions Counts the logic transitions on an input pin BX-24, BX-35 only
DACPin Generates a pseudo-analog voltage at an output pin
FreqOut Generates dual sinewaves on output pin BX-24, BX-35 only
GetADC Returns analog voltage BX-24, BX-35 only
GetPin Returns the logic level of an input pin
InputCapture Records a pulse train on the input capture pin
OutputCapture Sends a pulse train to the output capture pin
PlaySound Plays sound from sampled data stored in EEPROM BX-24, BX-35 only
PulseIn Measures pulse width on an input pin
PulseOut Sends a pulse to an output pin
PutDAC Generates a pseudo-analog voltage at an output pin
PutPin Configures a pin to 1 of 4 input or output states
RCTime Measures the time delay until a pin transition occurs
ShiftIn Shifts bits from an I/O pin into a byte variable BX-24, BX-35 only
ShiftOut Shifts bits out of a byte variable to an I/O pin BX-24, BX-35 only

Communications

Debug.Print Sends string to Com1 serial port
DefineCom3 Defines parameters for serial I/O on arbitrary pin BX-24, BX-35 only
Get1Wire Receives data bit using Dallas 1-Wire protocol BX-24, BX-35 only
OpenCom Opens an RS-232 serial port
OpenSPI Opens SPI communications
Put1Wire Transmits data bit using Dallas 1-Wire protocol BX-24, BX-35 only
SPICmd SPI communications
X10Cmd Transmits X-10 data BX-24, BX-35 only

Network (BX-01 only)

GetNetwork Reads data from a remote RAM location BX-
01 only
GetNetworkP Reads data from a remote EEPROM location BX-01 only
OpenNetwork Opens the network BX-01 only
PutNetwork Sends data to a remote RAM location BX-01 only
PutNetworkP Sends data to a remote EEPROM location BX-01 only
PutNetworkPacket Sends a special packet over the network BX-
01 only
PutNetworkQueue Sends data to a remote queue BX-01 only

5

The following BX-24 system calls require BX-24 chip version 2.1 or above:

ADCToCom1
CBool
Com1ToDAC
FlipBits
GetBit
PutBit
ShiftIn
ShiftOut

The BasicX chip version can be determined by using procedure SerialNumber on all BasicX systems. On
BX-24 systems, version 2.1 can be visually identified by a yellow dot on the SPI EEPROM chip.

6

Abs function

Syntax

F = Abs(Operand)

Arguments

Item Type Direction Description

Operand Any numeric type Input Operand

F Same as operand Output Function return

Description

Returns the absolute value of the operand.

Example

Dim X As Single
Dim I As Integer

X = Abs(-5.3) ' X is 5.3

I = Abs(-47) ' I is 47

Known Bugs

The Abs function may generate erroneous type mismatch error messages in expressions of the following
types:

Long
UnsignedLong
UnsignedInteger

7

ACos function

Syntax

F = ACos(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Single Output Function return

Description

Calculates the arc cosine. The function return is in units of radians.

Example

Dim F As Single

F = ACos(0.707107) ' F is Pi/4 radians (45 Degrees)

8

ADCToCom1 procedure

Syntax BX-24, BX-35 Only

Call ADCToCom1(PinNumber, DataRate)

Arguments

Item Type Direction Description

PinNumber Byte Input ADC pin number. Range is 13 to 20.

DataRate Integer Input Data rate. Units are samples per second, at 1 byte
per sample. Range is 113 to 11 000.

Description

ADCToCom1 reads the ADC (Analog to Digital Converter) and streams data out the Com1 serial port at
DataRate samples per second. The baud rate is constant at 115 200 baud (procedure OpenCom is not
required since this procedure takes over Com1). To stop the stream, call the procedure using 0 as
PinNumber.

Warning

No other ADC readings should be made while ADCToCom1 is active. Also, this procedure uses Timer1,
which means it would conflict with anything else that depends on Timer1, such as InputCapture and
OutputCapture.

Example

' Read ADC pin 16, send to Com1 at 5000 sample/s.
Call ADCToCom1(16, 5000)

' Stop the stream after 1 second.
Call Delay(1.0)
Call ADCToCom1(0, 5000)

Analog input: AC signal
centered at 2.5 V with max-imum
range of 2.5 +/- 1.25 V, as shown
to the right.

Digital output: stream of bytes
in range 0 to 255 and scaled
approximately such that a 1.25
V input generates a 0 output,
and 3.75 V input generates a
255 output.

9

Asc function

Syntax

F = Asc(Source)

Arguments

Item Type Direction Description

Source String Input String source.

F Byte Output ASCII code of the first character of Source.

Description

Returns the ASCII code of the first character of a string.

Example

Dim Tx As String * 3, Code As Byte
Tx = "ABC"
Code = Asc(Tx) ' Code is 65 (ASCII "A")

10

ASin function

Syntax

F = ASin(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Single Output Function return

Description

Calculates arc sine. The function return is in units of radians

Example

Dim F As Single

F = ASin(1.0) ' F is Pi/2 radians (90 Degrees)

11

Atn function

Syntax

F = Atn(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Single Output Function return

Description

Calculates arc tangent. The function return is in units of radians.

Example

Dim Y As Single

F = Atn(1.0) ' F is Pi/4 radians (45 degrees).

12

BlockMove procedure

Syntax

Call BlockMove(NumberOfBytes, SourceAddress, DestinationAddress)

Arguments

Item Type Direction Description

NumberOfBytes UnsignedInteger Input Number of bytes to copy. Legal range is 1
to 65 535.

SourceAddress UnsignedInteger Input Address of source.

DestinationAddress UnsignedInteger Input Address of destination.

Description

Copies a block of memory from source to destination in RAM. BlockMove can copy an arbitrarily large
block of memory in a single operation, and the block is allowed to span multiple variables in memory.

Example

Sub Main()

 Dim UI As New UnsignedInteger
 Dim B(1 To 2) As Byte

 UI = &h9ABC&

 ' Copy the 16-bit unsigned integer variable to the
 ' two byte array.
 Call BlockMove(2, MemAddress(UI), MemAddress(B))

 ' At this point, B(1) is BCh and B(2) is 9Ah (note
 ' that B(2) is the most significant byte).

End Sub

13

CallTask procedure

Syntax

CallTask "TaskName", TaskStack

Arguments

Item Type Direction Description

TaskName Task name Input Name of procedure to be used as a task.
The name must be in quotes.

TaskStack Byte array Input/Output Stack memory to be used by task – must
be a module-level byte array

Description

CallTask starts a procedure as a parallel running task. The TaskName procedure is just like any other
procedure except it's not allowed to have formal parameters.

The task must be allocated memory to be used as workspace. That's what TaskStack is for. This array is
used as memory workspace for processing expressions, math functions, calling subprograms, etc.

Multiple tasks can be run at the same time, up to the limit of available stack memory. Each task is
executed on a sequential basis. Multiple copies of the same task can be run at the same time using
different stacks.

Tasks can start other tasks, and a task can call other subprograms. With the exception of the main
program, whenever a task exits, either through an End Sub statement or an Exit Sub statement, the task
is completed and ceases to run. The stack used by the task is then free to be used by another task.

The main program is an exception. It never terminates as long as the processor keeps running.

Warning

If a task has insufficient stack space, it will cause the whole BasicX chip to become unreliable. It is better
to err on the side of too much stack space.

Note that the TaskStack array requires 15 bytes of overhead for its internal task frame. This means the
array needs to be at least 15 bytes long, plus enough room for the actual task stack.

Example

See CallTaskExample.bas example file in the BX01_Docs\Examples\Doc_Examples subdirectory.

14

CBool function

Syntax BX-24, BX-35 Only

F = CBool(Operand)

Arguments

Item Type Direction Description

Operand Byte Input Operand

F Boolean Output Function return

Description

Converts a Byte type to a Boolean type.

If the operand is zero, the function returns False. If the operand is nonzero, the function returns True.

Example

Dim B As Boolean

B = CBool(255) ' B is True.

B = CBool(127) ' B is True.

B = CBool(0) ' B is False.

15

CByte function

Syntax

F = CByte(Operand)

Arguments

Item Type Direction Description

Operand Any numeric Input Operand

F Byte Output Function return

Description

Converts any numeric type to Byte type.

Example

Dim X As Single
Dim B As Byte

X = 2.4
B = CByte(X) ' B is 2

16

Chr function

Syntax

F = Chr(Code)

Arguments

Item Type Direction Description

Code Byte Input ASCII code of character.

F String Output Character in string.

Description

Converts an ASCII code to a character in a string. If the destination string is larger than one character, the
string is left justified and blank filled.

Example

Dim Tx as String * 1
Tx = Chr(65) ' Tx is "A" (ASCII 65).

17

CInt function

Syntax

F = CInt(Operand)

Arguments

Item Type Direction Description

Operand Any numeric Input Operand

F Integer Output Function return

Description

Converts any numeric type to Integer type.

Example

Dim X As Single
Dim Y As Integer

X = 1.5
Y = CInt(X) ' Y is 2

18

CLng function

Syntax

F = CLng(Operand)

Arguments

Item Type Direction Description

Operand Any numeric Input Operand

F Long Output Function return

Description

Converts any numeric type to Long type.

Example

Dim X As Single
Dim L as Long

X = 1.5
L = CLng(X) ' L = 2

19

Com1ToDAC procedure

Syntax BX-24, BX-35 Only

Call Com1ToDAC(PinNumber)

Arguments

Item Type Direction Description

PinNumber Byte Input I/O pin number.

Description

This procedure streams data from the Com1 serial port to a DAC on PinNumber output pin. The data
source should be a remote BasicX system running procedure ADCToCom1.

As bytes arrive at the serial port, the processor will change the value of the DAC to correspond. The Com1
baud rate is automatically set to 115 200 baud (it is not necessary to call OpenCom). The DAC is updated
at a constant 10 000 updates per second, and the output voltage range is 0 V to 5 V (on 5 V systems).

There are 2 ways to terminate Com1ToDAC. First, you can call the procedure with a PinNumber of 0.
Second, the remote system can terminate its ADCToCom1.

Example

' Stream data from Com1 to a DAC on pin 17.
Call Com1ToDAC(17)

' Turn off the stream after 1.5 seconds.
Call Delay(1.5)
Call Com1ToDAC(0)

20

Cos function

Syntax

F = Cos(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Single Output Function return

Description

Calculates cosine. The operand is in units of radians

Example

Dim F As Single

' Cos(Pi/4)
F = Cos(0.785398) ' F is 0.707 107

21

CountTransitions function (float version)

Syntax BX-24, BX-35 Only

F = CountTransitions(PinNumber, TimeInterval)

Arguments

Item Type Direction Description

PinNumber Byte Input Pin number.

TimeInterval Single Input Time interval over which to count. Units are in
seconds. Range is about 2.441 µs to 4800.0 s.
Resolution is about 2.441 µs.

F Long Output Number of transitions.

Description

This function counts the number of logic transitions that occur during the specified time interval. Both
rising edges and falling edges are counted as transitions. The maximum sample rate is 409 600 sample/s.

Counting starts as soon as the function is called. If no transitions occur within the specified time interval,
the function returns 0.

Warning

This procedure halts all multitasking for the duration of the call. The real time clock (RTC), task switching
and network traffic are suspended during this time. If TimeInterval is comparable in size or greater than
the RTC tick period (about 1.95 milliseconds), the RTC will lose time.

22

CountTransitions function (integer version)

Syntax BX-24, BX-35 Only

F = CountTransitions(PinNumber, TimeInterval)

Arguments

Item Type Direction Description

PinNumber Byte Input Pin number.

TimeInterval Long Input Time interval over which to count. Units are (1
/ 409 600) s (about 2.441 µs).

F Long Output Number of transitions.

Description

This function counts the number of logic transitions that occur during the specified time interval. Both
rising edges and falling edges are counted as transitions. The maximum sample rate is 409 600 sample/s.

Counting starts as soon as the function is called. If no transitions occur within the specified time interval,
the function returns 0.

Warning

This procedure halts all multitasking for the duration of the call. The real time clock (RTC), task switching
and network traffic are suspended during this time. If TimeInterval is comparable in size or greater than
the RTC tick period (about 1.95 milliseconds), the RTC will lose time.

23

CPUSleep procedure

Syntax

Call CPUSleep()

Arguments

None.

Description

This procedure causes the processor to execute a special machine-language SLEEP instruction, which
can put the processor in various low power modes depending on how internal registers are configured.
Refer to Atmel documentation on the details of using the SLEEP instruction.

24

CStr function

Syntax

F = CStr(Operand)

Arguments

Item Type Direction Description

Operand Boolean or numeric Input Operand

F String Output Function return

Description

Converts Boolean and numeric types to String type.

Example

Dim Tx As String, B As Boolean

Tx = "V = " & CStr(-193) & " m/s" ' Tx is "V = -193 m/s"

B = True
Tx = "State = " & CStr(B) ' Tx is "State = True"

25

CSng function

Syntax

F = CSng(Operand)

Arguments

Item Type Direction Description

Operand Any numeric Input Operand

F Single Output Function return

Description

Converts any numeric type to Single type.

Example

Dim Y As Single
Dim I As Integer

I = 3
Y = CSng(I) ' Y is 3.0

26

CuInt function

Syntax

F = CuInt(Operand)

Arguments

Item Type Direction Description

Operand Any discrete numeric Input Operand

F UnsignedInteger Output Function return

Description

Converts any discrete (non-float) numeric type to UnsignedInteger type.

Example

Dim L As Long
Dim U As New UnsignedInteger

L = 65535
U = CuInt(L) ' U is 65 535

27

CuLng function

Syntax

F = CuLng(Operand)

Arguments

Item Type Direction Description

Operand Any discrete numeric Input Operand

F UnsignedLong Output Function return

Description

Converts any discrete (non-float) numeric type to UnsignedLong type.

Example

Dim U As New UnsignedLong
Dim B As Byte

B = 255
U = CuLng(B) ' Type conversion -- U is now 255

28

DACPin procedure

Syntax

Call DACPin(Pin, DACvalue, DACcounter)

Arguments

Item Type Direction Description

Pin Byte Input Pin number.

DACvalue Byte Input Voltage output, range 0 to 255 units. Unit conversions:
 0 = 0 volts
 255 = 5 volts (on 5 V systems)
Example: Converting volts to DACvalue
 1.6 volts = 1.6 V * 256 / 5.0V = DACvalue = 82
Example: Converting DACvalue to volts
 167 counts = 167 * 5.0 V / 256 = 3.26 volts

DACcounter Byte Input/Output DACcounter is a value that must be returned each time
the routine is called so that the DAC remains in sync. If
you have multiple DACs running concurrently, then you
must have a different DACcounter for every pin.

Description

DACPin generates an 8-bit pseudo-analog voltage on an I/O pin. On 5 volt systems, the voltage range is
0.0 V to 5.0 V, with a resolution of about 19.6 mV.

A rapid set of pulses is precisely timed to produce the desired voltage. A simple low pass filter circuit is
needed externally to filter the output. PutDAC produces this "blast" of pulses for a short time, then places
the pin in a high impedance state before returning.

The external filter circuit is relied upon to maintain the voltage between calls. DACPin should be called
periodically to refresh the pin and keep the voltage within tolerances. The optimum refresh rate depends
on the characteristics of the circuit to which the pin is connected. You might consider calling DACPin in a
separate task if you need to refresh the pin continuously.

See PutDAC for the floating point equivalent of DACPin.

Warning

DACPin turns the selected pin into an output pin independent of any other setting. Also, if the output pin is
not refreshed periodically, the analog output voltage will not be maintained

Example

Dim DACcounter As Byte

' Set pin 17 to 3.26 volts = (167 * 5.0V / 256)
Call DACPin(17, 167, DACcounter)

29

Debug.Print method

Syntax

Debug.Print Operand1 [; Operand2 ; ... OperandN] [;]

Arguments

Item Type Direction Description

OperandN String Input Operand

Description

Debug.Print sends one or more strings out the Com1 serial port at 19 200 baud. Multiple string
parameters must be separated by semicolons.

A carriage-return/linefeed pair is automatically appended unless an optional semicolon terminates the line.
An empty Debug.Print outputs a carriage return/linefeed only.

Debug.Print automatically sets up Com1 for output. OpenCom is not needed.

Example

Debug.Print "Velocity = "; CStr(193);

Debug.Print "m/s"

Debug.Print ' Outputs only <CR><LF>

' Output is "Velocity = 193 m/s<CR><LF><CR><LF>

30

DefineCom3 procedure

Syntax BX-24, BX-35 Only

Call DefineCom3(InputPin, OutputPin, ParameterMask)

Arguments

Item Type Direction Description

InputPin Byte Input Input pin number.

OutputPin Byte Input Output pin number.

ParameterMask Byte Input Communication parameters (see below).

Allowable values for the internal bit pattern in ParameterMask:

 Parameter Value Bit pattern
 (x = don't care)

Inverted logic &H80 1 0 x x x x x x
Non-inverted logic &H00 0 0 x x x x x x

Even parity &H30 x x 1 1 x x x x (7 bit only)
Odd parity &H20 x x 1 0 x x x x (7 bit only)
No parity &H00 x x 0 0 x x x x

7 data bits &H07 x x x x 0 1 1 1
8 data bits &H08 x x x x 1 0 0 0

Description

DefineCom3 defines parameters for serial port Com3. This procedure is used in conjunction with
OpenCom to define the port, which can be routed to any pair of I/O pins. Com3 always uses 1 stop bit.

If you want to open a port with a single pin (as input-only or output-only), you can use pin 0 as one of the
pin numbers. Pin 0 is treated as a dummy pin.

Warning

Parity is not supported for 8-bit data.

Example

' Define port 3 to use pin 16 as input, 17 as output. Also use
' inverted logic, even parity, 7 data bits. Implicit 1 stop bit.
Call DefineCom3(16, 17, bx1011_0111)

' Define baud rate and buffers for port 3.
Call OpenCom(3, 19200, InputBuffer, OutputBuffer)

31

Delay procedure

Syntax

Call Delay(Interval)

Arguments

Item Type Direction Description

Interval Single Input Delay period. Range is 0.0 to 127.0 s.
Resolution is about 1.95 ms.

Description

Suspends the current task for at least the specified time interval. At the end of the delay, the task will
become ready again. How soon the task actually resumes execution depends on how busy the system is
with other tasks.

A delay of 0.0 is a useful way to allow other tasks to execute, while allowing immediate resumption if no
other tasks are eligible to run.

The actual time delay is guaranteed to be at least the specified delay period, as long as Interval meets
range constraints. A negative delay is treated as equivalent to a delay of 0.0.

If the task is locked, Delay will unlock the task (see procedure LockTask).

Example

' Set pin 16 high
Call PutPin(16, bxOutputHigh)

' Pause this task for a minimum of 1/2 s, then wake up
Call Delay(0.5)

'Set pin 16 low

Call PutPin(16, bxOutputLow)

32

DelayUntilClockTick procedure

Syntax

Call DelayUntilClockTick

Arguments

None.

Description

Suspends the current task until the next tick of the real time clock (RTC). Other tasks are allowed to run
during the suspension. How soon the task actually resumes execution depends on how busy the system is
with other tasks.

If the task is locked, this procedure will unlock the task (see procedure LockTask).

Example

 ' Toggle pin 17 at the RTC tick rate.
 Do
 Call DelayUntilClockTick
 Call PutPin(17, 1)
 Call DelayUntilClockTick
 Call PutPin(17, 0)
 Loop

33

Exp function

Syntax

F = Exp(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Single Output Function return

Description

Raises e to the power specified by the operand. The constant e (natural logarithm base) is approximately
2.718 282.

Example

Dim F As Single

F = Exp(1.0) ' F is equal to "e"

34

Exp10 function

Syntax

F = Exp10(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Single Output Function return

Description

Raises 10 to the power specified by the operand.

Example

Dim Y As Single

Y = Exp10(3.0) ' Y is 1000.0

35

FirstTime function

Syntax

F = FirstTime()

Arguments

Item Type Direction Description

F Boolean Output Whether the function has ever been called
since the program was download.

Description

Returns a Boolean value that indicates whether this is the first time the function has been called since the
program was downloaded.

FirstTime is useful if you want a program to behave differently the first time it is run. For example, you may
want to set persistent variables to initial values that apply only when the program is first executed.
Whenever the processor reboots, you can avoid re-initializing those variables, or you can set them to
other values.

This is what happens behind the scenes -- whenever a program is downloaded, a special variable in
nonvolatile EEPROM memory is set to a nonzero value. When you call FirstTime, the function looks at the
variable. If it's nonzero, the variable is cleared and the function returns true. Otherwise the function returns
false. Any subsequent calls to FirstTime will return false, even after the system reboots.

Example

Dim Setpoint As New PersistentSingle

Sub Initialize()

 If (FirstTime) Then

 ' This is the first time the program has been run.
 ' Initialize the default setpoint value.
 Setpoint = 72.0
 End If

End Sub

36

Fix function

Syntax

F = Fix(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Single Output Function return

Description

Truncates a floating point value without changing the data type. Truncation is toward 0.0.

Example

Dim Y1 As Single
Dim Y2 As Single

Y1 = Fix(1.1) ' Y1 is 1.0

Y2 = Fix(-4.9) ' Y2 is -4.0

37

FixB function

Syntax

F = FixB(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Byte Output Function return

Description

Truncates the floating point operand and converts the result to Byte type. Truncation is toward 0.

Example

Dim B1 As Byte
Dim B2 As Byte

B1 = FixB(6.4) ' B1 is 6

B2 = FixB(-9.8) ' B2 is -9

38

FixI function

Syntax

F = FixI(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Integer Output Function return

Description

Truncates the floating point operand and converts the result to Integer type. Truncation is toward 0.

Example

Dim I As Integer

I = FixI(-1.5) ' I is -1

39

FixL function

Syntax

F = FixL(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Long Output Function return

Description

Truncates the floating point operand and converts the result to Long type. Truncation is toward 0.

Example

Dim L As Long

L = FixL(12.9) ' L is 12

40

FixUI function

Syntax

F = FixUI(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F UnsignedInteger Output Function return

Description

Truncates the floating point operand and converts the result to UnsignedInteger type. Truncation is toward
0.

Example

Dim I As New UnsignedInteger

I = FixUI(-1.5) ' I is -1

41

FixUL function

Syntax

F = FixUL(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F UnsignedLong Output Function return

Description

Truncates the floating point operand and converts the result to UnsignedLong type. Truncation is toward
0.

Example

Dim L As New UnsignedLong

L = FixUL(5.9) ' L is 5

42

FlipBits function

Syntax BX-24, BX-35 Only

F = FlipBits(Operand)

Arguments

Item Type Direction Description

Operand Byte Input Operand

F Byte Output Function return

Description

FlipBits generates the mirror image of the operand's bit pattern. LSbit becomes MSbit and vice versa.

Example

Dim A As Byte, B As Byte

A = bx11110100

B = FlipBits(A) ' B is bx00101111.

43

FreqOut procedure (float version)

Syntax BX-24, BX-35 Only

Call FreqOut(Pin, Freq1, Freq2, Duration)

Arguments

Item Type Direction Description

Pin Byte Input Output pin number.

Freq1 Integer Input Frequency 1. Units are in Hz.

Freq2 Integer Input Frequency 2. Units are in Hz.

Duration Single Input Duration of signal. Units are in seconds.
Range is about 1.0 ms to 2.56 s.

Description

Generates an analog signal that consists of two superimposed sine waves. The signal is generated for the
specified duration, where the time units are in seconds.

Warning

This procedure halts all multitasking for the duration of the call. The real time clock (RTC), task switching
and network traffic are suspended during this time. If Duration is greater than 1.95 milliseconds, the RTC
will lose time.

44

FreqOut procedure (integer version)

Syntax BX-24, BX-35 Only

Call FreqOut(Pin, Freq1, Freq2, Duration)

Arguments

Item Type Direction Description

Pin Byte Input Output pin number.

Freq1 Integer Input Frequency 1. Units are in Hz.

Freq2 Integer Input Frequency 2. Units are in Hz.

Duration Integer Input Duration of signal. Units are in ms. Range
is 1 ms to 2560 ms.

Description

Generates an analog signal that consists of two sine waves. The signal is generated for the specified
duration, where the time units are in milliseconds.

Warning

This procedure halts all multitasking for the duration of the call. The real time clock (RTC), task switching
and network traffic are suspended during this time. If Duration is greater than 1 unit, the RTC will lose
time.

45

Get1Wire function

Syntax BX-24, BX-35 Only

F = Get1Wire(PinNumber)

Arguments

Item Type Direction Description

PinNumber Byte Input Pin number.

F Byte Output Bit value. Range is 0 to 1.

Description

Receives a single bit using the Dallas 1-Wire protocol. The bit is input on the specified pin number.

46

GetADC procedure (float version)

Syntax BX-24, BX-35 Only

Call GetADC(PinNumber, NondimVolt)

Arguments

Item Type Direction Description

PinNumber Byte Input Pin number.

NondimVolt Integer Output Nondimensional voltage. Range is 0.0 to 1.0.
Resolution is about 0.0978 %.

Description

GetADC returns 10-bit analog voltage. The returned value is nondimensional, with a range of 0.0 to 1.0.
For 5 V systems, the range corresponds to 0.0 V to 5.0 V, with a resolution of about 4.89 mV (5 / 1023).

ADC pin numbers depend on the system:

 BX-24 ADC pins: 13 to 20
 BX-35 ADC pins: 33 to 40

Note that GetADC automatically configures the pin for analog input. You don’t need a separate call to
configure the pin to input mode.

Example

Dim NondimVolt As Single
Const PinNumber As Byte = 13

Call GetADC(PinNumber, NondimVolt)

47

GetADC function (integer version)

Syntax BX-24, BX-35 Only

Voltage = GetADC(PinNumber)

Arguments

Item Type Direction Description

PinNumber Byte Input Pin number.

F Integer Output Voltage. Range is 0 to 1023. For 5 V
systems, units are in 5/1023 volts (about
4.89 mV).

Description

GetADC returns a 10-bit analog voltage. ADC pin numbers depend on the system:

 BX-24 ADC pins: 13 to 20
 BX-35 ADC pins: 33 to 40

Note that GetADC automatically configures the pin for analog input. You don’t need a separate call to
configure the pin to input mode.

Example

Dim Voltage As Integer
Const PinNumber As Byte = 13

Voltage = GetADC(PinNumber)

48

GetBit function

Syntax BX-24, BX-35 Only

F = GetBit(Operand, BitNumber)

Arguments

Item Type Direction Description

Operand Any variable
or array

Input Operand

BitNumber Byte Input Bit number (numbering starts at 0). Range
is 0 to 255.

F Byte Output Function return

Description

GetBit returns the value of the specified bit. Bit numbering starts at 0. If the operand is an array, GetBit
can be used to read any of the first 256 bits of the array.

Example

' This illustrates GetBit for a single byte.

 Dim A As Byte, B As Byte, C As Byte

 A = bx00100000

 B = GetBit(A, 5) ' B is 1.
 C = GetBit(A, 6) ' C is 0.

' This illustrates GetBit for a 32-bit Long array.

 Dim L(1 To 2) As Long

 L(1) = 0
 L(2) = 1

 B = GetBit(L, 31) ' B is 0.
 C = GetBit(L, 32) ' C is 1 (1st bit in 2nd element of array).

49

GetDate procedure

Syntax

Call GetDate(Year, Month, Day)

Arguments

Item Type Direction Description

Year Integer Output Year. Range is 1999 to 2177.

Month Byte Output Month.

Day Byte Output Day of month.

Description

GetDate returns the date.

50

GetDayOfWeek function

Syntax

F = GetDayOfWeek()

Arguments

Item Type Direction Description

F Byte Output Day of week. Range is 1 to 7 (bxSunday,
bxMonday .. bxSaturday).

Description

Returns the day of week. Range is bxSunday to bxSaturday.

Warning

The day of week is undefined until the calendar date is defined. See procedures PutDate or
PutTimestamp to define the calendar date.

51

GetEEPROM procedure

Syntax

Call GetEEPROM(Address, Value, Length)

Arguments

Item Type Direction Description

Address Long Input Starting location of the source in EEPROM

Value Any type Input/Output Starting location of the destination in RAM.

Length UnsignedInteger Input Number of bytes to transfer from EEPROM
to RAM

Description

GetEEPROM transfers data from EEPROM to RAM. The EEPROM memory is where the BasicX program
is stored. Since a particular program may not use all the available memory, this procedure allows you to
use leftover space for nonvolatile data storage.

GetEEPROM can transfer an arbitrarily large block of memory in a single operation, and the block is
allowed to span multiple variables in RAM.

Example

' Each of these strings requires 22 bytes of storage
' (20 characters plus 2 bytes overhead).
Dim Name As String * 20
Dim Address As String * 20
Dim Phone As String * 20

Sub Main()

 ' Read data from the EEPROM into RAM variables.
 Call GetEEPROM(1000, Name, 22)
 Call GetEEPROM(1022, Address, 22)
 Call GetEEPROM(1044, Phone, 22)

End Sub

52

GetNetwork procedure

Syntax BX-01 Only

Call GetNetwork(NodeAddress, MemoryAddress, Value, Result)

Arguments

Item Type Direction Description

NodeAddress UnsignedInteger Input Node address of the remote system.

MemoryAddress UnsignedInteger Input RAM address of the data to be copied. See
the discussion of MPX map files for more
information about variable locations.

Value Any scalar type Output Destination of the copy.

Result Byte Output Result of the network operation. See below
for allowable values.

Allowable values for Result:

bxNetOk = 0 No errors
bxNetNoResponse = 1 No response from remote system
bxNetBusy = 255 Network command in progress

Description

GetNetwork copies a scalar variable from a remote BasicX system over the network.

The task that executes the GetNetwork procedure will suspend until the data transfer is either
acknowledged by the remote system, or a number of retries has been attempted. The task is then
awakened and a result value is returned.

Known Bugs

See procedure PutNetwork.

53

GetNetworkP procedure

Syntax BX-01 Only

Call GetNetworkP(NodeAddress, MemoryAddress, Value, Result)

Arguments

Item Type Direction Description

NodeAddress UnsignedInteger Input Node address of the remote system.

MemoryAddress UnsignedInteger Input EEPROM (persistent) address of the data
to be copied. See the discussion of MPX
map files for more information about
variable locations.

Value Any scalar type Output Destination of the copy.

Result Byte Output Result of the network operation. See below
for allowable values.

Allowable values for Result:

bxNetOk = 0 No errors
bxNetNoResponse = 1 No response from remote system
bxNetBusy = 255 Network command in progress

Description

GetNetworkP copies a persistent scalar variable from a remote BasicX system over the network.

The task that executes the GetNetworkP procedure will suspend until the data transfer is either
acknowledged by the remote system, or a number of retries has been attempted. The task is then
awakened and a result value is returned.

Known Bugs

See procedure PutNetwork.

54

GetPin function

Syntax

F = GetPin(Pin)

Arguments

Item Type Direction Description

Pin Byte Input Pin number

F Byte Output Logic level (0 or 1).

Description

GetPin reads the state of an I/O pin. GetPin is typically used in conjunction with procedure PutPin, which
configures the pin.

Warning

If you call GetPin without previously configuring the pin as input, results are undefined. The pin direction
can be set using PutPin, or you can use the chip dialog boxes in the compiler to configure each pin.

Example

Dim PinLogicLevel As Byte

' Define pin 16 as input.
Call PutPin(16, bxInputPullup)

' Read the value of pin 16.
PinLogicLevel = GetPin(16)

Known Bugs

On the BX-01, if a pin is set to input-pullup, GetPin erroneously changes the pin to input-tristate when the
function returns. Software workaround -- just after GetPin, add a call to PutPin in order to restore the pin
state to input-pullup. Hardware workaround -- add an external pullup resistor to the pin.

55

GetQueue procedure

Syntax

Call GetQueue(Queue, Variable, Count)

Arguments

Item Type Direction Description

Queue Byte array Input/Output Queue from which data is removed.

Variable Any type Output Destination of extracted data.

Count Integer Input Number of bytes to be extracted.

Description

GetQueue removes data from a queue and places the data into one or more RAM variables. GetQueue
can cross boundries between variables to retrieve multiple pieces of data in a single operation. Variables
do not have to be the same type going in as going out (see example)

If there is nothing in the queue, GetQueue will suspend the current task until the correct amount of data is
placed into the queue.

Queues are a convenient way to pass data between tasks or to store data for future processing.

Warning

If there is nothing in the queue, and no task ever places anything in the queue, this command will not
return and the task will halt indefinitely.

Example

Dim Oven(1 To 50) As Byte
Dim Pi As Single
Dim Fridge(1 To 4) As Byte

Sub Main()

 Call OpenQueue(Oven, 50)
 Pi = 3.14159

 ' Put some Pi in the oven.
 Call PutQueue(Oven, Pi, 4)

 ' Put four byte-size pieces of Pi in the Fridge.
 Call GetQueue(Oven, Fridge, 4)

End Sub

56

GetTime procedure

Syntax

Call GetTime(Hour, Minute, Second)

Arguments

Item Type Direction Description

Hour Byte Output Hours. Range is 0 to 23.

Minute Byte Output Minutes after the hour.

Second Single Output Seconds. Resolution is about 1.95 ms.

Description

Returns time of day in 24-hour format. Floating point seconds are returned, with a resolution of 1 / 512
seconds (about 1.95 ms). Resolution is independent of time-of-day.

57

GetTimestamp procedure

Syntax

Call GetTimestamp(Year, Month, Day, Hour, Minute, Second)

Arguments

Item Type Direction Description

Year Integer Output Year. Range is 1999 to 2177.

Month Byte Output Month.

Day Byte Output Day.

Hour Byte Output Hours. Range is 0 to 23.

Minute Byte Output Minutes.

Second Single Output Seconds.

Description

Returns the date and time of day. Time is in 24-hour format.

58

GetXIO function

Syntax BX-01 only

F = GetXIO(Address)

Arguments

Item Type Direction Description

Address UnsignedInteger Input I/O address, range 607 to 65 535

F Byte Output I/O port value

Description

GetXIO receives data from an eXtended I/O port. BasicX supports up to 65 536 of these I/O ports.

Using the same pins as RAM for addressing (the RD line, the WR line and the IO Request line), BasicX
addresses the 65 536 ports.

Warning

For the Address argument, do not use values below 607 (&H25F).

This command enables the RAM/XIO pins. If you have any other functions or data on these pins, then
they will be overridden.

Example

Dim Value As Byte
Dim Address As New UnsignedInteger

Address = &H700

' Get port data.
Value = GetXIO(Address)

59

GetXRAM procedure

Syntax BX-01 only

Call GetXRAM(Address, Buffer, Count)

Arguments

Item Type Direction Description

Address UnsignedInteger Input Starting address in extended RAM. Legal
range is 608 to 65 535.

Buffer Any type Input/Output Variable or array in RAM to which data is
copied

Count UnsignedInteger Input Number of bytes to transfer. Legal range is
1 to 64 928.

Description

GetXRAM copies data from extended RAM into local RAM variables. The lengths of both local and
extended RAM are 64 KB.

GetXRAM can transfer an arbitrarily large block of memory in a single operation, and the block is allowed
to span multiple variables in RAM.

Warning

If the copy operation overflows RAM memory, the system may crash.

Internal RAM in the BasicX chip occupies addresses in range 0 to 607 (&H25F). Any transfers into RAM
used by the BasicX operating system may crash the system. Please see BasicX RAM for more
information about this subject.

Example

Sub Main()

 Dim LocalData(1 To 20) As Single

 ' Write the array to XRAM, starting at location
 ' 4096 (&H1000). Use four bytes per element
 ' for floating point type.
 Call PutXRAM(&H1000, LocalData, 20*4)

 ' Retrieve the array from XRAM. Syntax is similar.
 Call GetXRAM(&H1000, LocalData, 20*4)

End Sub

60

InputCapture procedure

Syntax

Call InputCapture(CaptureArray, NumberOfPulses, EdgeTrigger)

Arguments

Item Type Direction Description

CaptureArray Array of
UnsignedInteger

Output Array of pulse widths. Units are (1 / 7 372 800)
seconds Pulse width range is 1 to 65 535
(about 136 ns to 8.89 ms).

NumberOfPulses Integer Input Number of pulses to capture.

EdgeTrigger Byte Input Trigger mechanism -- 0 means a falling edge
starts the capture, 1 means a rising edge starts
the capture.

Description

InputCapture captures a pulsetrain from the input capture pin (see pin definitions). By utilizing special
hardware within the BasicX chip, the procedure measures pulse widths to very precise tolerances --
values are in units of 1 / 7 372 800 seconds (about 135.6 nanoseconds).

InputCapture suspends the calling task until CaptureArray is filled. The procedure does not tie up the
machine waiting for input – other tasks are allowed to run while InputCapture is waiting.

On the BX-01 and BX-35, the input capture pin is always a tristate (high impedance) input. On the BX-24,
the input capture pin is shared with I/O pin 12, which means pin 12 should be set to either input-tristate or
input-pullup before calling InputCapture (see procedure PutPin).

Note – once captured, the same CaptureArray pulsetrain can be output through the OutputCapture
procedure.

Warning

InputCapture does not start recording anything until the specified edge trigger (rising or falling) is detected.
If the edge never occurs, the procedure never returns.

Timeouts return 65 535 (&HFFFF). That is, if a capture starts, and if a timeout occurs during one or more
pulses, the timed-out pulses return values of 65 535.

InputCapture takes over Timer1. If any other task or device is using Timer1, there will be a conflict. The
Com2 serial port is an example of a device that use Timer1.

61

Example

In this example, it is assumed that the above pulse train is received at the input capture pin:

Sub Main()

 Dim PulseTrain(1 To 3) As New UnsignedInteger

 ' Get 3 samples, where the first sample starts with a rising edge.
 Call InputCapture(PulseTrain, 3, 1)

 ' After the capture, the array contains approximately these values:
 '
 ' PulseTrain(1) = 1000 => 136 us
 ' PulseTrain(2) = 2000 => 271 us
 ' PulseTrain(3) = 3000 => 407 us

End Sub

Note that both high and low pulse widths are recorded in the PulseTrain array.

Pin numbers:

 BX-01 InputCapture pin: 31 (PDIP)

 BX-24 InputCapture pin: 12 (shared with I/O pin)

 BX-35 InputCapture pin: 20 (PDIP)

62

LCase function

Syntax

F = LCase(StringVar)

Arguments

Item Type Direction Description

StringVar String Input Input string

F String Output Output string

Description

Converts a string to lower case.

Example

Dim Tx1 As String
Dim Tx2 As String

Tx1 = "ABC"
Tx2 = LCase(Tx1) ' Tx2 is "abc"

63

Len function

Syntax

F = Len(StringVar)

Arguments

Item Type Direction Description

StringVar String Input String variable

F Integer Output Length of string

Description

Finds the length of a string.

Example

Dim Length As Integer
Dim Tx1 As String
Dim Tx2 As String * 10

Tx1 = "ABC"

Length = Len(Tx1) ' Length of Tx1 is 3.
Tx2 = "ABC" ' Tx2 is left-justified, blank-filled.
Length = Len(Tx2) ' Length of Tx2 is (constant) 10.

Tx1 = ""
Length = Len(Tx1) ' Now length of Tx1 is zero.

64

LockTask procedure

Syntax

Call LockTask()

Arguments

None.

Description

Locktask prevents any other tasks from running (with some exceptions -- see below). BasicX will only
execute the current task. Other tasks won't run until a call to UnlockTask, Delay, Sleep or any other call
that would cause the current task to switch, such as queue or networking system calls, or if another task is
triggered by a hardware interrupt.

It is permissible to call LockTask if a task is already locked -- multiple calls to LockTask have the same
effect as a single call if a task is already locked. For example, you don’t need 2 calls to UnlockTask in
order to undo 2 calls to LockTask, generally speaking.

Warning

If other time critical tasks are also running when the LockTask command is executed, the other tasks
generally will not run. Care must be taken to cooperate with other tasks as required.

All tasks generally have the same priority, although if another task is blocked and waiting for a hardware
interrupt (see WaitForInterrupt), the interrupt event has priority. The locked task becomes temporarily
unlocked and the task scheduler resumes normal task switching. As soon as the previously-locked task
resumes running, it becomes locked again.

65

Log function

Syntax

F = Log(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Single Output Function return

Description

Calculates the natural logarithm (base e). The value of e is approximately 2.718 282.

Example

Dim F As Single

F = Log(20.08554) ' F is 3.0 (i.e. 20.085 54 is approximately e^3)

66

Log10 function

Syntax

F = Log10(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Single Output Function return

Description

Calculates the logarithm base 10.

Example

Dim F As Single

F = Log10(100.0) ' F is 2.0.

67

MemAddress function

Syntax

F = MemAddress(Variable)

Arguments

Item Type Direction Description

Variable Any type Input Variable or array

F Integer Output Address of argument

Description

MemAddress returns the RAM address of the argument. When used in conjunction with RAMPeek or
RAMPoke, these functions allow you to modify data directly, while bypassing the restrictions normally
imposed by the language.

If the variable is an array, string or multi-byte variable, MemAddress returns the address of the first byte or
least significant byte..

Warning

MemAddress should not be used for addresses beyond 32 767, which is the maximum legal value for the
function return type. See MemAddressU if you need to handle higher addresses.

Example

See MemAddressU for example.

68

MemAddressU function

Syntax

F = MemAddressU(Variable)

Arguments

Item Type Direction Description

Variable Any type Input Variable or array

F UnsignedInteger Output Address of argument

Description

MemAddressU returns the RAM address of the argument. When used in conjunction with RAMPeek or
RAMPoke, these functions allow you to modify data directly, while bypassing the restrictions normally
imposed by the language.

If the variable is an array, string or multi-byte variable, MemAddressU returns the address of the first byte
or least significant byte.

Example

Sub Main()

 Dim B(1 to 5) As Byte, I As Integer
 Dim Value As Byte

 ' Fill byte array with even numbers.
 For I = 1 to 5
 B(I) = 2 * CByte(I)
 Next

 ' Read element 3 of the array, which is actually
 ' offset 2 bytes after the beginning of the array
 ' in memory.
 Value = RAMPeek(MemAddressU(B)+2)

 ' At this point, Value is 6.

End Sub

69

Mid function

Syntax

F = Mid(StringVar, Start, Length)

Mid(StringVar, Start, Length) = F

Arguments (function return)

Item Type Direction Description

StringVar String Input Source string

Start Integer Input Start of substring in StringVar

Length Integer Input Length of substring in StringVar

F String Output Destination string

Arguments (left side of assignment)

Item Type Direction Description

StringVar String Output Destination string

Start Integer Input Start of substring in StringVar

Length Integer Input Length of substring in StringVar

Description

Mid copies a substring from one string to another. Mid is a unique function that can be used on either side
of an assignment statement (see examples).

Warning

If the source and destination strings don't have the same length, the destination string is either truncated
or blank-filled as needed.

70

Example

Sub Main()

 Dim Istr As String
 Dim Ostr As String

 Istr = "Time heals all wounds"
 Ostr = Istr

 Mid(Ostr, 6, 6) = Mid(Istr, 16, 6)
 Mid(Ostr, 12, 5) = Mid(Istr, 11, 5)
 Mid(Ostr, 17, 5) = Mid(Istr, 6, 5)
 Mid(Ostr, 19, 1) = "e"

 ' At this point, Ostr = "Time wounds all heels"

End Sub

71

OpenCom procedure

Syntax

Call OpenCom(PortNumber, BaudRate, InputQueue, OutputQueue)

Arguments

Item Type Direction Description

PortNumber Byte Input Serial port number. Range is 1 to 3.

BaudRate Long Input Baud rate. See below for allowable values.

InputQueue Byte array Input/Output Data buffer for incoming data.

OutputQueue Byte array Input/Output Data buffer for outgoing data.

Allowable values for BaudRate:

For port 1 (Com1) -- range is 2400 to 460 800.
For port 2 (Com2) -- range is 300 to 19 200 (BX-01 only)
For port 3 (Com3) -- range is 300 to 19 200 (BX-24, BX-35 only)

Description

OpenCom is used to set up and initialize a BasicX serial port. The procedure attaches two queues to the
port -- one for input and one for output. You must call OpenQueue for both queues before calling
OpenCom. All ports use 1 start bit and 1 stop bit. Ports 1 and 2 use no parity and 8 data bits. Port 3 has
more flexibility regarding parity, data bits and inverted signals (see DefineCom3).

Once a port is opened, bytes placed in the output queue are sent out the port, and any bytes that arrive
are placed in the input queue. The two queues are used for data buffering, and interrupt-driven I/O occurs
in the background. Pin numbers:

 BX-01: Com1 uses pins 10 and 11. Com2 uses pins 1 and 12; also Timer1.
 BX-24: Com1 uses pins 1 and 2. Com3 uses any I/O pins (other than 1 or 2); also Timer2.
 BX-35: Com1 uses pins 14 and 15. Com3 uses any I/O pins (other than 14 or 15); also Timer2.

Warning

OpenQueue must be called for both input and output queues before calling OpenCom. If an input queue
fills with bytes faster than the program can remove them, the bytes will be lost.

On the BX-01, Com1 is also the network and cannot be used as a serial port at the same time. If you use
Com1 as a serial port on the BX-01 Developer Board, you must disable the network by setting pin 14
to output-high (see procedure PutPin).

On the BX-24 and BX-35, DefineCom3 must be called before OpenCom for port 3 (see DefineCom3).

Example

See OpenComEx.bas example file.

72

OpenNetwork procedure

Syntax BX-01 Only

Call OpenNetwork(BoardAddress, GroupAddress)

Arguments

Item Type Direction Description

BoardAddress UnsignedInteger Input Node address. Range is 0 to 65 279
(&H0000 to &HFEFF).

GroupAddress Byte Input Group address. Range is 0 to 254
(&H00 to &HFE).

Description

Defines the network and group address of the local BasicX Chip and enables access from remote BasicX
chips.

If you select the network via the BasicX downloading system, the network is started automatically.
OpenNetwork is not necessary in this case.

Data sent and received via the network needs to be addressed so that it goes to the correct BasicX chip or
correct group of BasicX chips.

Some node addresses have special meanings:

 &HFFFF -- Broadcast this message to all BasicX chips
 &HFFxx -- Broadcast this message to all BasicX chips that are members of group &Hxx

Warning

Every BasicX chip on a network must have a unique address. Opening a networked BasicX chip with the
same address as another BasicX chip can cause problems.

Example

' This call allows us to receive all packets addressed to
' BoardAddress 1234h. We will also receive groupcasts to
' GroupAddress 32h
Call OpenNetwork (&H1234, &H32)

73

OpenQueue procedure

Syntax

Call OpenQueue(Queue, Size)

Arguments

Item Type Direction Description

Queue Byte array Input/Output Array used to create the queue.

Size Integer Input Size (in bytes) of Queue. Minimum is 10
bytes.

Description

Creates a queue from an array of bytes.

Queues are data structures that have special properties. Queues act as data storage elements that can
be filled and emptied by tasks. Special code within the BasicX chip is used for automatically transferring
queue data between tasks.

Internally, a queue is implemented as a circular buffer, and pointers for the queue are maintained within
the queue itself. Opening the queue initializes the pointers. The internal pointer overhead requires 9 bytes,
so if you define a 20 byte queue array (for example), you really only have 11 bytes available for data.

Warning

Queues need to be large enough to accept the largest data items placed in them, in addition to 9 bytes
required for internal overhead. The smallest allowable queue is 10 bytes.

Example

Dim ICom2(1 to 30) As Byte
Dim OCom2(1 to 30) As Byte

Sub Main()

 Dim Ch As Byte

 ' Open input and output queues.
 Call OpenQueue(ICom2, 30)
 Call OpenQueue(OCom2, 30)

 ' Open serial port and attach both queues to the port.
 Call OpenCom(2, 19200, ICom2, OCom2)

 Call PutQueueStr(OCom2, "Hello World!")

End Sub

74

OpenSPI procedure

Syntax

Call OpenSPI(Channel, SetupByte, PinNumber)

Arguments

Item Type Direction Description

Channel Byte Input Channel number. Range is 1 to 4.

SetupByte Byte Input A byte used to initialize the SPI port prior to
accessing the device using the SPICmd
command. See below for format.

PinNumber Byte Input Pin number of the pin used to chip select
the SPI device. The chip select is an active
low signal.

Format for SetupByte:

Name Action

SPI_LSB LSB is transmitted first
SPI_CPOL SCK is high when idle
SPI_CPHA See Table

SPI_ SPI_
CPHA CPOL Result

 0 0 Rising edge in middle of bit cell
 0 1 Falling edge in middle of bit cell
 1 0 Falling edge in middle of bit cell
 1 1 Rising edge in middle of bit cell

SPI_SCK04 SCK = CLK / 4
SPI_SCK16 SCK = CLK / 16
SPI_SCK64 SCK = CLK / 64
SPI_SCK128 SCK = CLK / 128

Description

BasicX has a Serial Peripheral Interface (SPI) bus built into the hardware of the chip. Using this bus,
peripherals from other manufacturers such as Motorola and National Semiconductor can be utilized for
special functions not capable of being performed by the BasicX chip directly.

The OpenSPI command provides the programmer the ability to have 4 SPI devices attached to a BasicX
chip.

75

The SPI bus can be configured in many different ways: polarity, clock phase, speed. The OpenSPI
command allows you to setup each channel independently of other devices.

Example

Dim SetupByte As Byte

SetupByte = SPI_CPHA or SPI_SCK64
Call OpenSPI(3, SetupByte, 16)

76

OpenWatchdog procedure

Syntax

Call OpenWatchdog(TimeoutValue)

Arguments

Item Type Direction Description

TimeoutValue Byte Input The TimeoutValue N is such that (16 * 2N) is the
timeout delay in ms, where N is range 0 to 7 (see
below).

Allowable values for TimeoutValue:

0 = 16 milliseconds
1 = 32 ms
2 = 64 ms
3 = 128 ms
4 = 256 ms
5 = 512 ms (approximately 1/2 second)
6 = 1024 ms (approximately 1 second)
7 = 2048 ms (approximately 2 seconds)

Description

OpenWatchdog starts the watchdog timer, which will restart the processor unless the timer is periodically
refreshed.

What's a watchdog timer? Sometimes an application is so critical that you want to keep it running in
almost any condition. If a program locks up or crashes for some reason -- perhaps it executes an
unforseen path, or an electrical spike causes garbled data -- a safety feature called a watchdog timer can
restart the processor. The timer counts down to a preset value, and if the timer is not refreshed before
TimeoutValue elapses, the processor is reset.

OpenWatchdog starts the watchdog timer. Afterwards, the program is supposed to kick the timer
periodically by calling procedure Watchdog. This call is typically inserted in a critical section of code that is
executed periodically. If the program malfunctions and fails to execute the critical code, the timer (ideally)
never gets refreshed. The watchdog will then reset and reboot the processor after the timeout period
elapses, and the program starts over at the beginning.

Warning

For safety reasons, the BasicX operating system includes no provisions for turning off a watchdog timer
once it’s turned on. Note also that the watchdog may interfere with downloading new programs -- if the
watchdog is active, you may need to do a hard reset whenever you download a new program.

Example

See WatchDogEx.bas example file.

77

OutputCapture procedure

Syntax

Call OutputCapture(CaptureArray, NumberOfPulses, StartingEdge)

Arguments

Item Type Direction Description

CaptureArray Array of
UnsignedInteger

Input Array of pulse widths. Units are in
1 / 7 372 800 seconds (about 135.6 ns).

NumberOfPulses Integer Input Number of pulses to generate.

StartingEdge Byte Input Edge type of starting pulse. Falling edge is
0, rising edge is 1.

Description

OutputCapture generates a pulsetrain on the output capture pin (see pin definitions). By utilizing special
hardware within the BasicX chip, the procedure generates pulse widths to very precise tolerances --
values are in units of 1 / 7 372 800 seconds (about 135.6 nanoseconds).

OutputCapture suspends the calling task until CaptureArray is exhausted. OutputCapture is a convenient
way to reproduce the pulsetrain detected by the InputCapture procedure.

Warning

OutputCapture takes over Timer1. If any other task or device is using Timer1, there will be a conflict. The
Com2 serial port is an example of a device that use Timer1.

78

Example

Sub Main()

 Dim PulseTrain(1 To 3) As New UnsignedInteger

 PulseTrain(1) = 1000 ' (1000 / 7 372 800) = 136 microseconds
 PulseTrain(2) = 2000 ' (2000 / 7 372 800) = 271 microseconds
 PulseTrain(3) = 3000 ' (3000 / 7 372 800) = 407 microseconds

 ' Generate the 3 pulses, starting with a rising edge.
 Call OutputCapture(PulseTrain, 3, 1)

End Sub

This example produces the following pulse train at the output capture pin:

BX-01 OutputCapture pin: 29 (PDIP)

BX-24 OutputCapture pin: 27

BX-35 OutputCapture pin: 18 (PDIP)

79

PeekQueue procedure

Syntax

Call PeekQueue(Queue, Variable, Count)

Arguments

Item Type Direction Description

Queue Byte array Input Queue from which data is copied.

Variable Any type Output Destination of copied data.

Count Integer Input Number of bytes copied.

Description

PeekQueue copies data from a queue into RAM variables, but without actually removing the data from the
queue. PeekQueue can cross boundries between variables to copy multiple pieces of data in a single
operation. Variables do not have to be the same type going in as going out.

If there is nothing in the queue, PeekQueue will suspend the current task until the correct amount of data
is placed into the Queue.

Warning

If there is nothing in the queue, and no task ever places anything in the queue, the procedure will not
return and the task will halt indefinitely.

Example

See PeekQueueEx.bas example file.

80

PersistentPeek function

Syntax

F = PersistentPeek(Address)

Arguments

Item Type Direction Description

Address UnsignedInteger Input Address of data source, range 32 to 511

F Byte Output Destination of copied data.

Description

PersistentPeek reads one byte of data located in persistent memory.

There are 480 bytes of persistent memory, located at addresses 32 to 511.

Example

Dim Data As Byte

' Read EEPROM data at address 1234.
Data = PersistentPeek(1234)

81

PersistentPoke procedure

Syntax

Call PersistentPoke(Value, Address)

Arguments

Item Type Direction Description

Value Byte Input Address of destination, range 32 to 511.

Address UnsignedInteger Input Source of copied data.

Description

PersistentPoke writes one byte of data to a location in persistent memory.

There are 480 bytes of persistent memory, located at addresses 32 to 511.

Warning

Writing to addresses outside the legal range may crash the system.

Note -- persistent memory is implemented in EEPROM, which has limits on how many times you can write
to it before it becomes unusable. Typical write limits are 100 000 to 1 000 000. Make sure your program is
not stuck in a fast loop writing to persistent memory or it will be destroyed quickly.

Example

Dim Data As Byte

' Write value 65 to EEPROM address 1234.
Data = 65
Call PersistentPoke(Data, 1234)

82

PlaySound procedure

Syntax BX-24, BX-35 Only

Call PlaySound(Pin, StartAddress, Length, SampleRate, RepeatCount)

Arguments

Item Type Direction Description

Pin Byte Input Output pin number.

StartAddress UnsignedInteger Input Starting address of data in EEPROM.

Length UnsignedInteger Input Length of data. Units are in bytes.

SampleRate UnsignedInteger Input Sample rate. Units are Hz.

RepeatCount UnsignedInteger Input Number of times to repeat the sound.

Description

PlaySound generates sound from sampled data stored in EEPROM.

Warning

This procedure halts all multitasking for the duration of the call. The real time clock (RTC), task switching
and network traffic are suspended during this time. If the combination of Length, SampleRate and
RepeatCount is such that the sound duration exceeds about 1.95 ms, the RTC will lose time.

83

Pow function

Syntax

F = Pow(Operand, Exponent)

Arguments

Item Type Direction Description

Operand Single Input Operand

Exponent Single Input Exponent

F Single Output Function return

Description

Raises the operand to the power specified by the exponent.

Example

Dim F As Single

F = Pow(10.0, 3.0) ' F = 10^3 = 1000.0

Known Bugs

The function return is incorrect if the operand is negative and the exponent has an integer value.

84

PulseIn procedure (float version)

Syntax

Call PulseIn(Pin, State, PulseWidth)

Arguments

Item Type Direction Description

Pin Byte Input Pin number

State Byte Input Specifies either high (1) or low (0) pulse

PulseWidth Single Output Time interval. Units are in seconds. Valid
range is about 1.085 µs to 71.1 ms.
Timeout returns 0.0.

Description

Measure's the width of a pulse on the specified I/O pin.

PulseIn waits for a transition to the state you define, then measures the pulse's duration until it either
changes state again or times out. PulseIn times out in approximately 71 milliseconds and returns 0.0 for
PulseWidth.

PulseWidth resolution is about 1.085 µs.

Warning

PulseIn dedicates the processor to looking for pulses. The real time clock (RTC), task switching and
network traffic are suspended during this time. Input pulses longer than 1.95 milliseconds will result in a
loss of time in the RTC.

Example

Dim PulseWidth As Single

' Wait for a high pulse on pin 16.
Call PulseIn(16, 1, PulseWidth)

85

PulseIn function (integer version)

Syntax

PulseWidth = PulseIn(Pin, State)

Arguments

Item Type Direction Description

Pin Byte Input Pin number

State Byte Input Specifies either high (1) or low (0) pulse

PulseWidth Integer Output Time interval, in units of 8 / 7 372 800
seconds (about 1.085 µs). Valid range is 1
to 32 767 units. Timeout returns zero or
negative value.

Description

Measure's the width of a pulse on the specified I/O pin.

PulseIn waits for a transition to the state you define, then measures the pulse's duration until it either
changes state again or times out. PulseIn times out in approximately 35.5 ms and returns a 0 or negative
value for PulseWidth.

Warning

PulseIn dedicates the processor to looking for pulses. The real time clock (RTC), task switching and
network traffic are suspended during this time. Input pulses greater than a count of 1800 will result in the
loss of time in the RTC.

Example

Dim PulseWidth As Integer

' Wait for a high pulse on pin 16.
PulseWidth = PulseIn(16, 1)

86

PulseOut procedure (float version)

Syntax

Call PulseOut(Pin, PulseWidth, State)

Arguments

Item Type Direction Description

Pin Byte Input Pin number

PulseWidth Single Input Time interval. Units are in seconds, range
is about 1.085 µs to 71.1 ms.

State Byte Input Specifies either high (1) or low (0) pulse

Description

PulseOut sends a logic high or logic low pulse from any available I/O pin. The procedure waits until the
pulse has been sent before returning.

The resolution of PulseOut is 8 / 7 372 800 seconds (about 1.085 µs).

Note -- PulseOut can be used solely as a means of generating a delay -- that is, without affecting physical
I/O pins. This is done by using pin 0 as the pin parameter. Pin 0 is treated as a dummy pin.

Warning

This procedure halts all multitasking for the duration of the call. The real time clock (RTC), task switching
and network traffic are suspended during this time. Output pulses greater than 1.95 milliseconds will result
in the loss of time in the RTC.

Also, the behavior of PulseOut is undefined if PulseWidth violates range constraints.

Example

' Send a high pulse to pin 17. Pulse width is 1.5 ms.
Call PulseOut(17, 1.5E-3, 1)

87

PulseOut procedure (integer version)

Syntax

Call PulseOut(Pin, PulseWidth, State)

Arguments

Item Type Direction Description

Pin Byte Input Pin number

PulseWidth UnsignedInteger Input Time interval, in units of 8 / 7 372 800
seconds (about 1.085 µs). Range is 1 to
65 535 units.

State Byte Input Specifies either high (1) or low (0) pulse

Description

PulseOut sends a logic high or logic low pulse from any available I/O pin. The procedure waits until the
pulse has been sent before returning.

The resolution of PulseOut is 8 / 7 372 800 seconds (about 1.085 µs).

Note -- PulseOut can be used solely as a means of generating a delay -- that is, without affecting physical
I/O pins. This is done by using pin 0 as the pin parameter. Pin 0 is treated as a dummy pin.

Warning

This procedure halts all multitasking for the duration of the call. The real time clock (RTC), task switching
and network traffic are suspended during this time. Output pulses greater than 1.95 ms will result in the
loss of time in the RTC.

Also, the behavior of PulseOut is undefined if PulseWidth violates range constraints.

Example

Dim PulseWidth As Integer

' Pulse width is 1.5 ms.
PulseWidth = 1382 ' Unit conversion: 1.5E-3/1.085E-6 = 1382

' Send a high pulse to pin 17.
Call PulseOut(17, PulseWidth, 1)

88

Put1Wire procedure

Syntax BX-24, BX-35 Only

Call Put1Wire(PinNumber, BitValue)

Arguments

Item Type Direction Description

PinNumber Byte Input Pin number.

BitValue Byte Input Bit value. Range is 0 to 1.

Description

Transmits a single bit using the Dallas 1-Wire protocol. The bit is output on the specified pin number.

89

PutBit procedure

Syntax BX-24, BX-35 Only

Call PutBit(Operand, BitNumber, Value)

Arguments

Item Type Direction Description

Operand Any variable
or array

Input Destination of bit.

BitNumber Byte Input Bit number (numbering starts at 0). Range
is 0 to 255.

Value Byte Input/Output Value of bit. Range is 0 to 1.

Description

PutBit sets the specified bit to the state defined by Value. Bit numbering starts at 0. If the operand is an
array, PutBit can write to any of the first 256 bits of the array.

Example

' This illustrates PutBit for a single byte.

 Dim A As Byte, B As Byte, C As Byte

 A = bx00100000

 Call PutBit(A, 2, 1) ' Here A = bx00100100
 Call PutBit(A, 5, 0) ' Here A = bx00000100

' This illustrates PutBit for a 32-bit Long array.

 Dim L(1 To 2) as Long

 L(2) = 0

 ' Set the first bit of the second element.
 Call PutBit(L, 32, 1) ' Here, L(2) = 1.

90

PutDAC procedure

Syntax

Call PutDAC(Pin, NondimVolt, DACcounter)

Arguments

Item Type Direction Description

Pin Byte Input Pin number.

NondimVolt Single Input Nondimensional voltage. Range is 0.0 to 1.0. Resolution
is about 0.392 %.

DACcounter Byte Input/Output DACcounter is a value that must be returned each time
the routine is called so that the DAC remains in sync. If
you have multiple DACs running concurrently, then you
must have a different DACcounter for every pin.

Description

PutDAC generates an 8-bit pseudo-analog voltage on an I/O pin. On 5 volt systems, the voltage range is
0.0 V to 5.0 V, with a resolution of about 19.6 mV.

A rapid set of pulses is precisely timed to produce the desired voltage. A simple low pass filter circuit is
needed externally to filter the output. PutDAC produces this "blast" of pulses for a short time, then places
the pin in a high impedance state before returning.

The external filter circuit is relied upon to maintain the voltage between calls. PutDAC should be called
periodically to refresh the pin and keep the voltage within tolerances. The optimum refresh rate depends
on the characteristics of the circuit to which the pin is connected. You might consider calling PutDAC in a
separate task if you need to refresh the pin continuously.

See DACPin for the integer equivalent of PutDAC.

Warning

PutDAC turns the selected pin into an output pin independent of any other setting. Also, if the output pin is
not refreshed periodically, the analog output voltage will not be maintained

Example

Dim DACcounter As Byte
Const Pin As Byte = 16

' Set pin 16 to 75 percent of full scale.
 Call PutDAC(Pin, 0.75, DACcounter)

91

PutDate procedure

Syntax

Call PutDate(Year, Month, Day)

Arguments

Item Type Direction Description

Year Integer Input Year. Range is 1999 to 2177.

Month Byte Input Month.

Day Byte Input Day of month.

Description

Sets the date. The day of week is also defined automatically when PutDate is called (see GetDayOfWeek
function).

92

PutEEPROM procedure

Syntax

Call PutEEPROM(Address, Value, Length)

Arguments

Item Type Direction Description

Address Long Input Starting location of the destination in EEPROM.

Value Any type Input Starting location of the source in RAM.

Length Integer Input Number of bytes to transfer from RAM to
EEPROM.

Description

PutEEPROM transfers data from RAM to EEPROM. The EEPROM memory is where the BasicX program
is stored. Since a particular program may not use all available memory, PutEEPROM allows you to use
leftover space for nonvolatile data storage.

PutEEPROM can transfer an arbitrarily large block of memory in a single operation, and the block is
allowed to span multiple variables in RAM.

Warning

Writing to code space in EEPROM can corrupt an executing program. Any writes should be to addresses
beyond the end of the program. In order to determine the last address occupied by code, refer to the code
memory section in the MPP map file (the MPP file is generated whenever you compile a program).

Note that EEPROMs have limits on how many times you can write to them before they become unusable.
Typical write limits are 100 000 to 1 000 000. Make sure your program is not stuck in a fast loop writing to
EEPROM or it will be destroyed quickly.

Example

Dim Name As String * 20
Dim Address As String * 20

Sub Main()

 Name = "W.C.Fields"
 Address = "Chattanooga"

 ' Copy 2 strings at 22 bytes per string (20
 ' characters plus 2 bytes overhead per string).
 Call PutEEPROM(1000, Name, 22)
 Call PutEEPROM(1022, Address, 22)

End Sub

93

PutNetwork procedure

Syntax BX-01 Only

Call PutNetwork(NodeAddress, MemoryAddress, Value, Result)

Arguments

Item Type Direction Description

NodeAddress UnsignedInteger Input Node address of the remote system.

MemoryAddress UnsignedInteger Input RAM address of the data to be written. See
the discussion of MPX map files for more
information about variable locations.

Value Any scalar type Input Source of the copy.

Result Byte Output Result of the network operation. See below
for allowable values.

Allowable values for Result:

bxNetOk = 0 No errors
bxNetNoResponse = 1 No response from remote system
bxNetBusy = 255 Network command in progress

Description

PutNetwork copies a scalar variable to a RAM location you specify in a remote BasicX system.

The task that executes the PutNetwork procedure will suspend until the data transfer is either
acknowledged by the remote system, or a number of retries has been attempted. The task is then
awakened and a result value is returned.

Warning

Care must be taken when sending data to a remote system. If you do not send data to the correct location,
data in the remote system could become corrupted and make the system unreliable.

Known Bugs

If another node on the network attempts to transmit a network packet simultaneously, the processor may
hang.

94

PutNetworkP procedure

Syntax BX-01 Only

Call PutNetworkP(NodeAddress, MemoryAddress, Value, Result)

Arguments

Item Type Direction Description

NodeAddress UnsignedInteger Input Node address of the remote system.

MemoryAddress UnsignedInteger Input EEPROM address of the data to be written.
See the discussion of MPX map files for
more information about variable locations.

Value Any scalar type Input Source of the copy.

Result Byte Output Result of the network operation. See below
for allowable values.

Allowable values for Result:

bxNetOk = 0 No errors
bxNetNoResponse = 1 No response from remote system
bxNetBusy = 255 Network command in progress

Description

PutNetworkP copies a scalar variable to an EEPROM (persistent) location you specify in a remote BasicX
system.

The task that executes the PutNetworkP procedure will suspend until the data transfer is either
acknowledged by the remote system, or a number of retries has been attempted. The task is then
awakened and a result value is returned.

Warning

Care must be taken when sending data to a remote system. If you do not send data to the correct location,
data in the remote system could become corrupted and make the system unreliable.

Known Bugs

See procedure PutNetwork.

95

PutNetworkPacket procedure

Syntax BX-01 Only

Call PutNetworkPacket(Packet, Result)

Arguments

Item Type Direction Description

Packet Byte array Input Packet.

Result Byte Output Result of the network operation. See below
for allowable values.

Allowable values for Result:

bxNetOk = 0 No errors
bxNetNoResponse = 1 No response from remote system
bxNetBusy = 255 Network command in progress

Description

PutNetworkPacket is a command typically used by operating system functions that need to send a
network packet in a particular format.

PutNetworkPacket assumes that you know the packet format and have already built a formatted packet in
memory, which is sent out directly without any operating system supervision.

Warning

This procedure used by operating system functions and is typically not used by user programs.

Known Bugs

See procedure PutNetwork.

96

PutNetworkQueue procedure

Syntax BX-01 Only

Call PutNetworkQueue(NodeAddress, QueueAddress, Value, Result)

Arguments

Item Type Direction Description

NodeAddress UnsignedInteger Input Address of remote system.

QueueAddress UnsignedInteger Input RAM address of queue on remote system.
See the discussion of MPX map files for
more information about variable locations.

Value Any type Input Data to be placed in the remote queue.

Result Byte Output Result of network operation. See below for
allowable values.

Allowable values for Result:

bxNetOk = 0 No errors
bxNetNoResponse = 1 No response from remote system
bxNetBusy = 255 Network command in progress

Description

PutNetworkQueue places data in a queue in a remote system across the network.

This procedure is useful for cases where multiple BasicX systems send data to a common node. An
example is a security system where a central station will monitor events. Remote systems can send data
to a queue in the central station when events occur.

PutNetworkQueue places the node address of the sending node in the queue in front of the data. In this
way the remote computer knows the sender of the data. If the remote system does not need this data, the
system must extract and discard it.

Warning

Care must be taken when sending data to a remote system. If you do not send data to the correct location,
data in the remote system could become corrupted and make the system unreliable.

Known Bugs

See procedure PutNetwork.

97

PutPin procedure

Syntax

Call PutPin(Pin, State)

Arguments

Item Type Direction Description

Pin Byte Input Pin number.

State Byte Output Pin state. See below for allowable values.

Allowable values for State:

bxOutputLow = 0 Output low (typically 0 volts)
bxOutputHigh = 1 Output high (typically 5 volts)
bxInputTristate = 2 Tristate (Z, or high impedance)
bxInputPullup = 3 Pull-up (P, on-chip 120 k-Ohm pull-up)

Description

PutPin configures an I/O pin to be output low (0), output high (1), input tristate (Z), or input pull-up (P).

PutPin gives you total control over the state of a pin. You can output a high or low value as you might
expect. You can also set the pin to tristate, which is also called a high impedance. This is valuable when
you are communicating with a bi-directional bus. The fourth state is pull-up, which connects an on-chip
pull-up resistor of approximately 120 kΩ. This state is useful when you are reading data from a passive
device like a switch.

PutPin is typically used in conjunction with the GetPin function, where PutPin is used to define the state of
the pin before reading it.

Example

' Set I/O pin 17 high, then wait 1/2 second before pulling it low.
Call PutPin(17, bxOutputHigh)
Call Sleep(0.5)
Call PutPin(17, bxOutputLow)

98

PutQueue procedure

Syntax

Call PutQueue(Queue, Variable, Count)

Arguments

Item Type Direction Description

Queue Byte array Input/Output Queue into which data is inserted.

Variable Any type Input Data to insert into queue.

Count Integer Input Number of bytes to insert.

Description

PutQueue copies data from RAM variables into a queue. PutQueue can cross boundries between
variables to transfer multiple pieces of data in a single operation. Variables do not have to be the same
type going in as going out (see example code below). Note that if an entire array is copied to the queue in
a single operation, the data is transferred starting with the lowest element.

If the queue is full, PutQueue will suspend the task until there is enough room to insert the data.

Queues are a convenient way to pass data between tasks or to store data for future processing.

Warning

If there is not enough space left in the queue, and no task ever removes anything from the queue, the
procedure will not return and the task will halt indefinitely.

Example

Dim Oven(1 To 50) As Byte
Dim Pi As Single
Dim Fridge(1 To 4) As Byte

Sub Main()

 Call OpenQueue(Oven, 50)
 Pi = 3.14159

 ' Put some Pi in the oven.
 Call PutQueue(Oven, Pi, 4)

 ' Put four byte-size pieces of Pi in the Fridge.
 Call GetQueue(Oven, Fridge, 4)

End Sub

99

PutQueueStr procedure

Syntax

Call PutQueueStr(Queue, StringSource)

Arguments

Item Type Direction Description

Queue Byte array Input/Output Queue into which string is copied.

StringSource String Input String source to be copied into Queue.

Description

PutQueueStr places a string in a queue.

A typical use for this function is to make the equivalent of a "Print" statement, by placing text in a serial
port queue for transmission to another device.

Warning

If there is not enough space in the queue, and no task ever removes anything from the queue,
PutQueueStr will not return and the task will halt indefinitely. One way to avoid this problem is to break a
string into smaller pieces that are fed to the queue incrementally.

Example

Dim OCom(1 To 30) As Byte
Dim ICom(1 To 30) As Byte

Sub Main()

 Dim Howdy As String * 20

 Call OpenQueue(OCom, 30)
 Call OpenQueue(ICom, 30)
 Call OpenCom(2, 19200, ICom, OCom)

 Howdy = "Hello World!"
 Call PutQueueStr(OCom, Howdy)

 ' Append carriage return and line feed
 Call PutQueueStr(OCom, Chr(13) & Chr(10))

End Sub

100

PutTime procedure

Syntax

Call PutTime(Hour, Minute, Second)

Arguments

Item Type Direction Description

Hour Byte Input Hours. Range is 0 to 23.

Minute Byte Input Minutes after the hour.

Second Single Input Seconds. Resolution is about 1.95 ms.

Description

Sets the time of day in 24-hour format.

101

PutTimestamp procedure

Syntax

Call PutTimestamp(Year, Month, Day, Hour, Minute, Second)

Arguments

Item Type Direction Description

Year Integer Input Year. Range is 1999 to 2177.

Month Byte Input Month.

Day Byte Input Day.

Hour Byte Input Hours. Range is 0 to 23.

Minute Byte Input Minutes.

Second Single Input Seconds. Resolution is about 1.95 ms.

Description

Sets the date and time of day. Time is in 24-hour format. PutTimestamp also automatically defines the day
of week (see GetDayOfWeek function).

102

PutXIO procedure

Syntax BX-01 only

Call PutXIO(Address, Value)

Arguments

Item Type Direction Description

Address UnsignedInteger Input I/O address, range 607 to 65 535.

Value Byte Input Value to be sent to the port.

Description

PutXIO sends data to an eXtended I/O port. BasicX supports up to 65 536 of these I/O ports, making a
total of 512 Kbits of I/O.

Using the same pins as RAM for addressing (the RD line, the WR line and the IO Request line), BasicX
addresses the 65 536 ports.

Warning

For the Address argument, do not use values below 607 (&H25F).

This command enables the RAM/XIO pins. If you have any other functions or data on these pins, they will
be overridden.

Example

Dim Address As New UnsignedInteger
Dim Value As Byte

Address = &H3213
Value = &H47

' Output the data.
Call PutXIO(Address, Value)

103

PutXRAM procedure

Syntax BX-01 only

Call PutXRAM(Address, Buffer, Count)

Arguments

Item Type Direction Description

Address UnsignedInteger Input Starting address in extended RAM. Range
is 608 to 65 535.

Buffer Any type Input Variable or array in RAM from which data is
copied

Count UnsignedInteger Input Number of bytes to transfer. Range is 1 to
64 928.

Description

PutXRAM copies data from local RAM variables into extended RAM. The lengths of both local and
extended RAM are 64 KB.

PutXRAM can transfer an arbitrarily large block of memory in a single operation, and the block is allowed
to span multiple variables in RAM.

Example

Sub Main()

 Dim LocalData(1 To 20) As Single

 ' Write the array to XRAM, starting at location
 ' 4096 (&H1000). Use four bytes per element
 ' for floating point type.
 Call PutXRAM(&H1000, LocalData, 20*4)

 ' Retrieve the array from XRAM. Syntax is similar.
 Call GetXRAM(&H1000, LocalData, 20*4)

End Sub

104

Randomize procedure

Syntax

Call Randomize

Arguments

None

Description

Randomize uses the system clock to set the value of the seed for the random number generator. See Rnd
function for details.

105

RAMPeek function

Syntax

F = RAMPeek(Address)

Arguments

Item Type Direction Description

Address UnsignedInteger Input RAM address

F Byte Output Value of the byte at the above address

Description

RAMPeek allows you to read any byte in RAM memory, while bypassing the rules normally associated
with variable types. For example, you can look at the third byte of a 4-byte floating point variable, or look at
the bytes of a string directly.

Example

Dim Gbyte As Byte
Dim TestString As String * 32

Sub Main()

 ' Read byte at memory location 8756 (&h2234).
 Gbyte = RAMPeek(&h2234)

 TestString = "Hello World!"

 ' Read character 7 of the test string, which
 ' is actually offset 8 bytes after the
 ' beginning of the string in memory.
 Gbyte = RAMPeek(MemAddress(TestString)+ 8)

 ' At this point, Gbyte is 87 (ASCII "W").

End Sub

106

RAMPoke procedure

Syntax

Call RAMPoke(Value, Address)

Arguments

Item Type Direction Description

Value Byte Input Value of the byte to copy to RAM

Address UnsignedInteger Input Address of destination

Description

RAMPoke allows you to write a byte anywhere in RAM memory, while bypassing the rules normally
associated with variable types. For example you can modify the top byte of an integer, or modify the bytes
of a string directly.

Warning

Internal RAM in the BasicX chip occupies addresses in range 0 to 607 (&H25F). Any transfers into RAM
used by the BasicX operating system may crash the system. Please see BasicX RAM for more
information about this subject.

Example

Sub Main()

 Dim TestString As String * 32
 Dim Gbyte As Byte

 TestString = "Hel o World!"

 ' Read character 3 of the test string, which
 ' is actually offset 4 bytes after the
 ' beginning of the string in memory.
 Gbyte = RAMPeek(MemAddress(TestString) + 4)

 ' At this point, Gbyte is 108 (ASCII "l"). Copy
 ' the byte to the next character.
 Call RAMPoke(Gbyte, MemAddress(TestString) + 5)

 ' The string now reads "Hello, World!"

End Sub

107

RCTime procedure (float version)

Syntax

Call RCTime(Pin, State, Interval)

Arguments

Item Type Direction Description

Pin Byte Input Pin number

State Byte Input Pin state – 0 (logic low) or 1 (logic high)

Interval Single Output Time interval, in units of seconds. The
valid range is about 1.085 µs to 71.1 ms.
Timeout returns 0.0.

Description

RCTime measures how long an I/O pin stays at a specified state. The pin is configured to input-tristate
(high impedance) for the measurement. Timeout returns 0.0. Resolution is about 1.085 µs.

Warning

RCTime dedicates the processor to looking for a transition. The real time clock, task switching and
network traffic are suspended during this time.

The procedure overrides any previous pin configuration and leaves the pin as input-tristate.

If the pin is not at the specified state when you call RCTime, the procedure immediately returns with the
smallest valid nonzero value for Interval (about 1.085E-6).

Example

This example illustrates the use of RCTime to measure the time it takes for a capacitor to discharge.

Dim TimeDelay As Single

Call PutPin(17, bxOutputLow) ' Pull I/O pin 17 low.

' Wait about 8.7 microseconds for the capacitor to discharge.
Call Delay(8.7E-6)

' Measure the time it takes for the capacitor to charge to a
' set point. Set pin 17 to input-tristate and then measure how
' long the pin stays at logic low.
Call RCTime(17, 0, TimeDelay)

108

RCTime function (integer version)

Syntax

Interval = RCTime(Pin, State)

Arguments

Item Type Direction Description

Pin Byte Input Pin number

State Byte Input Pin state – 0 (logic low) or 1 (logic high)

Interval Integer Output Time interval, in units of 8 / 7 372 800
seconds (about 1.085 µs). The valid
range is 1 to 32 767 units. Timeout
returns 0 or negative value.

Description

RCTime measures how long an I/O pin stays at a specified state. The pin is configured to input-tristate
(high impedance) for the measurement. Timeout returns a 0 or negative value.

Warning

RCTime dedicates the processor to looking for a transition. The real time clock, task switching and
network traffic are suspended during this time.

The procedure overrides any previous pin configuration and leaves the pin as input-tristate.

If the pin is not at the specified state when you call RCTime, the procedure immediately returns with 1 as
Interval

Example

This example illustrates the use of RCTime to measure the time it takes for a capacitor to discharge.

Dim TimeDelay As New UnsignedInteger

Call PutPin(17, bxOutputLow) ' Pull I/O pin 3 low.

' Wait about 8.7 microseconds for the capacitor to discharge.
Call Sleep(8)

' Measure the time it takes for the capacitor to charge to a
' set point. Set pin 3 to input-tristate and then measure how
' long the pin stays at logic low.
TimeDelay = RCTime(17, 0)

109

ResetProcessor procedure

Syntax

Call ResetProcessor()

Arguments

None.

Description

ResetProcessor causes the BasicX processor to reset and reboot within 17 milliseconds. Internally, this
procedure actually uses the watchdog timer to reset the processor.

110

Rnd function

Syntax

F = Rnd

Arguments

Item Type Direction Description

F Single Output Function return

Description

Rnd returns a random number greater than or equal to 0.0 and less than 1.0.

Rnd is a multiplicative congruential random number generator that uses a 32-bit integer seed in static
memory. Procedure Randomize can be used to set the seed based on the value of the system clock.

Alternatively, you also have direct access to the seed, which is a system-supplied global variable called
SeedPRNG. The seed is a 32-bit Long type.

111

Semaphore function

Syntax

F = Semaphore(Variable)

Arguments

Item Type Direction Description

Variable Boolean Input Boolean variable being used as a
semaphore.

F Boolean Output Function returns true if the semaphore is
owned by this task, false if semaphore is
already in use by another task.

Description

Semaphore is a function that allows tasks to share variables in a cooperative fashion.

Semaphores protect shared data. A semaphore is a signalling mechanism that allows a task to signal to
other tasks whether or not it "owns" a particular block of data. When a task owner is done with the data,
the task clears the semaphore, giving up ownership and allowing others to use the data.

Due to the complex nature of the function please refer to the entire section covering the semaphore.

Warning

If a task fails to set a semaphore to false when it's done with shared data, other tasks will never be able to
use the data, and your system could grind to a halt.

Example

See SemaphoreEx.bas example file.

112

SerialNumber procedure

Syntax

Call SerialNumber(Value)

Arguments

Item Type Direction Description

Value Array of Byte(1 to 6) Output Array containing version and serial
numbers. Internal format:

 Byte 1 -- Major version number
 Byte 2 -- Minor version number

 Bytes 3 to 6 -- Four-byte serial number
 (BX-01 only)

Description

This procedure returns major and minor version numbers of the BasicX chip. On BX-01 systems, the
procedure also returns unique serial number data in bytes 3 to 6. On BX-24 systems, bytes 3 to 6 are
undefined.

Example

Dim SNC(1 to 6) As Byte
Dim MajorVersion As Byte
Dim MinorVersion As Byte
Dim SNumber(1 to 4) As Byte

' Read composite data.
Call SerialNumber(SNC)

' Extract the version numbers.
MajorVersion = SNC(1)
MinorVersion = SNC(2)

' Extract the 4-byte serial number (BX-01 only).
SNumber(1) = SNC(3)
SNumber(2) = SNC(4)
SNumber(3) = SNC(5)
SNumber(4) = SNC(6)

113

Sin function

Syntax

F = Sin(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Single Output Function return

Description

Sine function. Operand is in units of radians.

Example

Dim F As Single
Const Pi As Single = 3.14159265

' 30 degrees, converted to radians.
F = Sin(Pi/6.0) ' Here F is 0.5

114

Sleep procedure (float version)

Syntax

Call Sleep(SleepInterval)

Arguments

Item Type Direction Description

SleepInterval Single Input The sleep interval has a range of about
0.0 s to 128.0 s. Resolution is about 1.95 ms.

Description

Suspends the current task for approximately the specified time interval. At the end of SleepInterval, the
task will become ready again. How soon the task actually resumes execution depends on how busy the
system is with other tasks.

A sleep of 0.0 is a useful way to allow other tasks to execute, while allowing immediate resumption if no
other tasks are eligible to run.

If the task is locked, Sleep will unlock the task (see procedure LockTask).

Warning

Sleep actually waits for a certain number of clock ticks, which means SleepInterval represents neither a
guaranteed minimum nor maximum delay, since the exact timing depends on where the program is
relative to a tick cycle (if you want a guaranteed minimum delay, see procedure Delay).

Example

'Set pin 1 high
Call PutPin(1, 1)

'Pause this task for approximately 1/2 s, then wake up
Call Sleep(0.5)

'Set pin 1 low

Call PutPin(1, 0)

115

Sleep procedure (integer version)

Syntax

Call Sleep(SleepInterval)

Arguments

Item Type Direction Description

SleepInterval UnsignedInteger Input The sleep interval has a range of 0 to 65
535. Units are 1/512 seconds (about 1.95
ms).

Description

Suspends the current task for approximately the specified time interval. At the end of SleepInterval, the
task will become ready again. How soon the task actually resumes execution depends on how busy the
system is with other tasks.

A sleep of 0 is a useful way to allow other tasks to execute, while allowing immediate resumption if no
other tasks are eligible to run.

If the task is locked, Sleep will unlock the task (see procedure LockTask).

Warning

Sleep actually waits for the SleepInterval number of clock ticks, which means SleepInterval represents
neither a guaranteed minimum nor maximum delay, since the exact timing depends on where the program
is relative to a tick cycle (if you want a guaranteed minimum delay, see procedure Delay).

Example

' Set pin 1 high
Call PutPin(1, 1)

' Pause this task for approximately 1/2 s, then wake up.
Call Sleep(256)

' Set pin 1 low
Call PutPin(1, 0)

116

ShiftIn function

Syntax BX-24, BX-35 Only

F = ShiftIn(DataPin, ClockPin, NumberOfBits)

Arguments

Item Type Direction Description

DataPin Byte Input Data source pin number.

ClockPin Byte Input Clock pin number.

NumberOfBits Byte Input Number of bits. Range is 1 to 8.

F Byte Output Function return.

Description

This function shifts in up to 8 bits of data through the DataPin input. The operating system automatically
clocks in each bit by using the specified ClockPin. In order to be compatible with I2C devices, the bit rate
is less than 400 kHz.

Bit ordering is MS bit first, LS bit last.

Before calling ShiftIn, the clock pin must first be set to the proper level (either high or low).

Example

Dim A As Byte

' Set the clock pin low.
Call PutPin(17, bxOutputLow)

' Shift 4 bits into A. Pin 16 is used for the data input.
A = ShiftIn(16, 17, 4)

117

ShiftOut procedure

Syntax BX-24, BX-35 Only

Call ShiftOut(DataPin, ClockPin, NumberOfBits, Operand)

Arguments

Item Type Direction Description

DataPin Byte Input Data source pin number.

ClockPin Byte Input Clock pin number.

NumberOfBits Byte Input Number of bits. Range is 1 to 8.

Operand Byte Input Source of data.

Description

This function shifts out up to 8 bits of data from Operand through the DataPin output. The operating
system automatically clocks out each bit by using the specified ClockPin. In order to be compatible with
I2C devices, the bit rate is less than 400 kHz.

Bit ordering is MS bit first, LS bit last.

Before calling ShiftIn, the clock pin must first be set to the proper level (either high or low).

Example

Dim A As Byte

' Set the clock pin high.
Call PutPin(17, bxOutputHigh)

' Shift 4 bits out of A. Pin 16 is used for the data output.
Call ShiftOut(16, 17, 4, A)

118

SPICmd procedure

Syntax

Call SPICmd(Channel, PutCount, PutData, GetCount, GetData)

Arguments

Item Type Direction Description

Channel Byte Input SPI channel number. Range is 1 to 4.

PutCount Byte Input Number of bytes to be sent to the device.
Zero means no data.

PutData Any type Input Data to be sent (if PutCount = 0, you still
need a dummy argument here).

GetCount Byte Input Number of bytes to receive from the
device.

GetData Any type Input/Output Data to be received.

Description

BasicX has a Serial Peripheral Interface (SPI) bus built into the chip. Using this bus, peripherals from
other manufacturers such as Motorola and National Semiconductor can be utilized for special functions
not capable of being performed by the BasicX chip directly.

The SPI bus is an interesting bus in that data is exchanged by the sender and receiver at the same time.
In other words, data is going in both directions simultaneously. Data flow can also be unidirectional if
desired -- SPICmd allows either case.

Before calling SPICmd, you must call OpenSPI to initialize an SPI channel.

Warning

This command is for users who understand the SPI bus well. BasicX code is typically fetched from an SPI
EEPROM, which means that if the SPI bus is not handled correctly, instruction fetching could be affected.

119

Sqr function

Syntax

F = Sqr(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Single Output Function return

Description

Square root function.

Example

Dim F As Single

F = Sqr(9.0) ' F is 3.0

120

StatusQueue function

Syntax

F = StatusQueue(Queue)

Arguments

Item Type Direction Description

Queue Byte array Input Name of the queue to check.

F Boolean Output Returns true if there is data in Queue.
Otherwise returns false.

Description

StatusQueue allows the programmer to see if there is any data within a queue before the task tries to
obtain data. If a task does not check the queue using StatusQueue and then tries to read data from an
empty queue, the task will block until data is available.

Warning

When a queue is being used as a serial port output buffer, StatusQueue is not suitable for determining if
the buffer has been flushed. In particular, it is possible for StatusQueue to indicate the queue is empty
before a transmission is completed.

Example

Dim Queue(1 To 30) As Byte

Sub Main()

 Dim Data As Byte

 Call OpenQueue(Queue, 30)
 Do
 ' If data is in the queue, extract one byte.
 If StatusQueue(Queue) Then
 Call GetQueue(Queue, Data, 1)
 End If
 Loop
End Sub

121

Tan function

Syntax

F = Tan(Operand)

Arguments

Item Type Direction Description

Operand Single Input Operand

F Single Output Function return

Description

Tangent function. The operand is in units of radians.

Example

Dim F As Single

' Tan(Pi/4)
F = Tan(0.785398) ' F is 1.0.

122

TaskIsLocked function

Syntax

F = TaskIsLocked()

Arguments

Item Type Direction Description

F Boolean Output Whether task is locked.

Description

TaskIsLocked allows you to find out if the current task is locked. The function is useful if you have a
subprogram that needs to lock the task, then restore the lock status upon return.

123

Timer function

Syntax

F = Timer()

Arguments

Item Type Direction Description

F Single Output Floating point seconds since midnight.
Range is 0.0 to 86 400.0 s.

Description

Returns the time elapsed since midnight. Resolution depends on time of day -- best case is about 1.95 ms
(1/512 seconds) for small time values.

Example

Dim T1 As Single, T2 As Single, DT As Single

' Find starting time.
T1 = Timer

Call TimedProcedure

' Find ending time.
T2 = Timer

' Calculate elapsed time.
DT = T2 - T1

124

Trim function

Syntax

F = Trim(StringVar)

Arguments

Item Type Direction Description

StringVar String Input Input string

F String Output Output string

Description

Removes leading and trailing blanks from a string.

Example

Dim Tx1 As String
Dim Tx2 As String

Tx1 = " Hello, world "

Tx2 = Trim(Tx1) ' Tx2 is "Hello, world"

125

UCase function

Syntax

F = UCase(StringVar)

Arguments

Item Type Direction Description

StringVar String Input Input string

F String Output Output string

Description

Converts a string to upper case.

Example

Dim Tx1 As String
Dim Tx2 As String

Tx1 = "abc"
Tx2 = UCase(Tx1) ' Tx2 is "ABC"

126

UnlockTask procedure

Syntax

Call UnlockTask()

Arguments

None.

Description

UnlockTask releases a task from being locked. The procedure reverses the effect of the LockTask
procedure (locking a task inhibits the operating system from switching to another task). Unlocking a task
causes normal task switching to resume.

It is permissible to call UnlockTask if a task is already unlocked -- multiple calls to UnlockTask have the
same effect as a single call if a task is already unlocked. For example, you don’t need 2 calls to LockTask
in order to undo 2 calls to UnlockTask, generally speaking.

127

ValueS procedure

Syntax

Call ValueS(StringVar, Value, Success)

Arguments

Item Type Direction Description

StringVar String Input Input string

Value Single Output Return value

Success Boolean Output Success flag

Description

Converts a string to a Single type. If no errors occur, the number is returned in Value and the Success flag
is set to True. Otherwise Value is set to 0.0 and Success is set to False.

The number in the string must consist of numeric digits with optional signs for the number and exponent.
A decimal point is also optional. Leading and trailing control characters (such as spaces or tabs) are
ignored.

Example

 Dim Tx As String
 Dim Value As Single
 Dim Success As Boolean

 Tx = " 123 "
 Call ValueS(Tx, Value, Success) ' Value is 123.0, Success is True

 Tx = "-4.5E+03"
 Call ValueS(Tx, Value, Success) ' Value is -4500.0, Success is True

 ‘ Illegal characters.
 Tx = "&HFF"
 Call ValueS(Tx, Value, Success) ' Value is 0.0, Success is False

128

WaitForInterrupt procedure

Syntax

Call WaitForInterrupt(InterruptType)

Arguments

Item Type Direction Description

InterruptType Byte Input Interrupt type. See below for allowable
values.

Allowable values for InterruptType:

bxComparatorToggle = 0 Comparator toggle state (BX-01 only)
bxComparatorFallingEdge = 2 Falling edge of comparator (BX-01 only)
bxComparatorRisingEdge = 3 Rising edge of comparator (BX-01 only)
bxPinLow = 16 Low level on interrupt pin
bxPinFallingEdge = 24 Falling edge on interrupt pin
bxPinRisingEdge = 28 Rising edge on interrupt pin

 BX-01 interrupt pin number: 13 (PDIP)
 BX-24 interrupt pin number: 11 (shared with I/O pin)
 BX-35 interrupt pin number: 17 (PDIP)

Description

WaitForInterrupt allows a task to respond immediately to a critical event from the outside world. This
procedure gives you access to hardware interrupts built into the BasicX chip.

WaitForInterrupt blocks the calling task until the triggering event happens. When the event occurs, the
task is scheduled to be run immediately. The trigger has priority, even if another task is running and
locked (see procedure LockTask), in which case the other task becomes temporarily unlocked.

Warning

If no external event is generated, the calling task could wait indefinitely.

On the BX-24, the interrupt line is shared with I/O pin 11, which means pin 11 should be set to input-
tristate or input-pullup if you want to use the interrupt line.

Example

' Wait for rising edge on comparator.
Call WaitForInterrupt(bxComparatorRisingEdge)

129

Watchdog procedure

Syntax

Call Watchdog()

Arguments

None.

Description

Watchdog resets the watchdog timer before it times out.

Before calling Watchdog, you need to call OpenWatchdog to start the watchdog timer. See
OpenWatchdog for more information.

130

X10Cmd procedure

Syntax BX-24, BX-35 Only

Call X10Cmd(PinOut, Pin60Hz, HouseCode, KeyCode, RepeatCycles)

Arguments

Item Type Direction Description

PinOut Byte Input Output pin.

Pin60Hz Byte Input 60 Hz pin.

HouseCode Byte Input House code.

KeyCode Byte Input Key code.

RepeatCycles Byte Input Number of repeat cycles.

Description

Transmits an X-10 command at a repetition rate determined by RepeatCycles.

Example

Const X10_P As Byte = &HC
Const X10_Dim As Byte = &H9
Const X10_Bright As Byte = &HB

Call X10Cmd(16, 17, X10_P, X10_Dim, 8)
Call Delay(1.0)
Call X10Cmd(16, 17, X10_P, X10_Bright, 8)

131

